Homogeneous water nucleation in a laminar flow diffusion chamber.
نویسندگان
چکیده
Homogeneous nucleation rates of water at temperatures between 240 and 270 K were measured in a laminar flow diffusion chamber at ambient pressure and helium as carrier gas. Being in the range of 10(2)-10(6) cm(-3) s(-1), the experimental results extend the nucleation rate data from literature consistently and fill a pre-existing gap. Using the macroscopic vapor pressure, density, and surface tension for water we calculate the nucleation rates predicted by classic nucleation theory (CNT) and by the empirical correction function of CNT by Wolk and Strey [J. Phys. Chem. B 105, 11683 (2001)]. As in the case of other systems (e.g., alcohols), CNT predicts a stronger temperature dependence than experimentally observed, whereas the agreement with the empirical correction function is good for all data sets. Furthermore, the isothermal nucleation rate curves allow us to determine the experimental critical cluster sizes by use of the nucleation theorem. A comparison with the critical cluster sizes calculated by use of the Gibbs-Thomson equation is remarkably good for small cluster sizes, for bigger ones the Gibbs-Thomson equation overestimates the cluster sizes.
منابع مشابه
Characteristics-based sectional modeling of aerosol nucleation, condensation and transport
Aerosols can be generated by physical processes such as nucleation, condensation and coalescence. To predict spatially varying statistical properties of such aerosols, e.g., the size distribution of the droplets, these processes must be captured accurately. We model nucleation using classical nucleation theory, whereas the condensational growth is captured with a molecular diffusivity model. Th...
متن کاملSize dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets
The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperatureand size-dependent values of volumeand surface-based homogeneous nucleation rates between 234.8 and 2...
متن کاملVolume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach
Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, JV (T ), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution ...
متن کاملNucleation simulations using the fluid dynamics software FLUENT with the fine particle model FPM.
This work is an assessment of the capabilities of the FLUENT-FPM software package to simulate actual nucleation experiments. In the first step, we verified the FPM condensation routine with the NEWALC code. Next, homogeneous nucleation of n-butanol, n-pentanol, and n-hexanol in a laminar flow diffusion chamber (LFDC) was simulated and the results were compared to experimental data and an earlie...
متن کاملHomogeneous nucleation in spatially inhomogeneous systems
Homogeneous nucleation of a vapor in the presence of the loss of clusters by diffusion and thermophoretic drift is investigated. Analytical results are obtained for the cluster size distribution and the rate of nucleation by solving the modified kinetic equation for nucleation. The implications of cluster loss by diffusion and phoretic drift on the onset of the homogeneous nucleation of silicon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 132 24 شماره
صفحات -
تاریخ انتشار 2010